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Abstract

We extend the Miles’ mechanism of wind-wave generation to finite depth. A G-Miles
linear growth rate depending on the depth and wind velocity is derived and allows the
study of linear growth rates of surface waves from weak to moderate winds in finite
depth h. The evolution of B is plotted, for several values of the dispersion parameter
kh with k the wave number. For constant depths we find that no matter what the val-
ues of wind velocities are, at small enough wave age the B-Miles linear growth rates
are in the known deep water limit. However winds of moderate intensities prevent the
waves from growing beyond a critical wave age, which is also constrained by the water
depth and is less than the wave age limit of deep water. Depending on wave age and
wind velocity, the Jeffreys’ and Miles’ mechanisms are compared to determine which
of them dominates. A wind-forced nonlinear Schrédinger equation is derived and the
Akhmediev, Peregrine and Kuznetsov—Ma breather solutions for weak wind inputs in
finite depth h are obtained.

1 Introduction

The pioneer theories to describe surface wind-waves growth in deep water began with
the works of Jeffreys (1925); Phillips (1957) and Miles (1957, 1997) till the modern in-
vestigations that take nonlinearity and turbulence effects into account. Janssen (2004)
has provided a thorough review of the topic.

1.1 Miles’ and Jeffreys’ mechanisms of wind wave growth

Miles’ and Jeffreys’ theories consider both air and water to be incompressible and dis-

regard viscosity effects. Both theories are linear and Miles’ mechanism is limited to the

deep water domain. They give the linear wave growth yyjes and v efireys (respectively

noted y), and y,) of wind-generated normal Fourier modes of wavenumber k. In Miles

theory the basic state is a shear current in air and still water. The air turbulence is disre-
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garded (Janssen, 2004) aside from establishing the logarithmic profile of the wind flow.
The Miles mechanism of wave generation by wind states that waves are produced and
amplified through a resonance phenomenon. Resonance appears between the wave-
induced pressure gradient on the inviscid airflow and the surface waves. The resonant
mechanism happens at a critical height where the airflow speed matches the phase
velocity of the surface wave.

In 1925, Jeffreys produced the first plausible mechanism to explain the necessary
shift of the atmospheric pressure required for an energy transfer from the wind to the
waves. He assumed that this energy transfer was solely caused by a combination of
form drag and flow separation. It was assumed that flow separation occurred on the
leeward side of wave crests with re-attachment further down on the leeward slopes of
the wave. So flow separation is central in Jeffrey’s theory. The resulting growth rate y
increases with the difference between the wave phase velocity and the wind speed. Jef-
freys computed y, for deep water (Jeffreys, 1925) and for finite depth as well (Jeffreys,
1926). Air flow separation occuring only over steep waves (Banner and Melville, 1976;
Kawai, 1982), the Jeffreys’ sheltering mechanism must be applied locally in time and
space rather than constantly and everywhere on the wave field. Note that the sheltering
mechanism is working even without proper air flow separation. In fact, there is a thick-
ening of the boundary layer on the leeward side that generates a pressure asymmetry
and consequently a sheltering effect.

1.2 The Miles’ and Jeffreys’ mechanisms in finite depth: basis to model freak
waves events in coastal regions

Generally extreme wave events occur in the presence of wind. Kharif et al. (2008) and
Touboul and Kharif (2006) investigated the influence of wind on extreme wave events
using the Jeffreys’ sheltering theory. They have shown that extreme events may be
sustained longer by the air-flow separation. This mechanism can only be invoked if
the wave is steep enough to effectively separate the air flow. Otherwise, for a too low
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steepness parameter ka the Jeffreys’ sheltering mechanism due to flow separation
becomes irrelevant.

Miles’ and Jeffreys’ mechanism of wind-generated surface waves in deep water was
used in Touboul et al. (2008) to describe (theoretically and numerically) the evolution
of a chirped wave packet under wind forcing. A comparison of the y), and the y, values
corresponding to a modified Jeffreys mechanism was developed.

However, all this work is limited to deep water and hence unable to fully describe
winds generating near-shore waves where the wave field is influenced by bottom
bathymetry. Consequently they are not adequate to correctly describe the wind influ-
ence on extreme wave events in the coastal zone.

Therefore an extension of Miles’ theory of wind-generated monochromatic waves to
the case of finite depth under weak or moderate winds is needed, as well as a theoret-
ical formulation of Jeffreys’ theory in terms of adequate finite depth parameters.

The aims of this paper are: (i) to extend the Miles’ mechanism to a finite depth setup,
(i) to express the Jeffreys’ mechanism in terms of adequate dimensionless parameters,
(iii) to determine, in terms of wave age and wind velocity, which among the Miles’ and
Jeffreys’ mechanisms prevails and (iv) to derive a wind-forced nonlinear Schrédinger
equation (NLS) in finite depth to study the effects of wind and depth on extreme wave
events due to the modulational instability.

The paper is organized as follows. In Sects. 2, 2.1 and 2.2 the linear stability problem
of the air—water interface is presented and the derivation of the system of equations
coupling the waves to the air flow with the corresponding dispersion relation is done.
In Sects. 3, 3.1 and 3.2, we write the growth rates of Miles’ and Jeffreys’ theories,
with appropriate scalings and variables. In Sect. 4.1 the Miles’ coefficient G is plotted
as a function of wave age with kh constant. Next in Sect. 4.2, we present our results
about the evolution of the growth rate as a function of the wave age with A constant for
several wind velocities. A comparison between Miles’ and Jeffreys’ theory is shown and
discussed in Sect. 4.3. In Sect. 5 we derive a wind-forced NLS equation in finite depth A.
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The Akhmediev, Peregrine and Kuznetsov—Ma breather solutions for weak wind inputs
in finite depth A are exhibited. Finally in Sect. 6, conclusion and perspectives are drawn.

2 Coupling of the air and water dynamics at the interface

The fluid particles coordinates are expressed in a fixed 3-dimensional Cartesian frame
Oxyz, Oz being the upwards axis. We assume the problem to be symmetric along one
horizontal axis, reducing the problem to an area parallel to Oxz. We define the surface
z =0 as the rest state of the interface. The interface perturbation itself is denoted by
n and depends on (x,t). The water depth is set at —h, and the air extends from the
interface to infinity.

2.1 Water dynamics

The horizontal and vertical components of the fluid velocity are v and w, both depend-
ing on (x,z,t). They obey the linear Euler equations of motion in finite depth (Lighthill,
1978)

uX+WZ=0’ pwuf=_PX’ pWWf=_PZ’ (1)
w(-h)=0 at z=-h, (2)
n,=w(0) at z=n(x,t), 3)
P(n) = FR(n) +pwgn-F, at z=n(xt), (4)

here P =P + p,,gz — P, is a reduced pressure with P the pressure, £, the total atmo-
spheric pressure, g the gravitational acceleration and p,, the water density. P and P
depend on (x, z,t) as well, and subscripts in u, w and P denote partial derivatives. We
solve the linear equations system Eqgs. (1)—(3) with

P=P(2)e®, u=U(z)e"”,
w = W(Z)eiei n= ,ZOelg! (5)
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where P, U and W are to be found.We have the phase 6 = k(x — ct) with k the
wavenumber and ¢ the phase speed. n, is an unknown constant. Using Egs. (1-3)
we obtain v, w and P for all (x, z,t). Then, using Eq. (4) we derive

Pulo®’®{c?kcothkh — g} + Py = Py(n). (6)
In the archimedian interaction, P,(n) = £, and Eq. (6) returns the classical phase speed
expression,

c?=ci= %tanh(kh). (7)

We need an expression for £, at z = ] to obtain the modified c.
2.2 Air dynamics

We examine the steady-state of a prescribed horizontal air flow, with a mean velocity
U depending only on z. We denote physical quantities in the air domain by a subscript
a. The air density is p,, the perturbations to this steady-state are assumed to be u,,
w, for the velocities and P, for the pressure, all quantities depending on (x,z,t). Now,
using P, = P, + p, 9z — Py we have

Ugx + Wa, =0, (8)
Pa [ua,t + U(Z)Ua,x + UI(Z)Wa] = _Pa,)(! (9)
Pa [Wa,t + U(Z)Wa,x] = _Pa,27 (10)

with primes indicating differentiation with respect to z. Next we assume £, = Pa(z)eig,
u, = U,(2)e'®, w, = W,(2)e"® and we add the boundary conditions on W, and P,

lim,_, , oo (WS + kW,) =0, (11)
lim,_,, W, = W, (12)
lim,_,,oPa =0, (13)
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15

where W, is a wind forcing at the surface level. The pressure and the wind perturbations
are assumed to vanish at high altitudes. For the air, there is a kinematic condition as
well at the aerodynamic sea surface roughness z,, over the free surface 7. In this work,
z,y Will be determined by the Charnock relation (Charnock, 1955)

2
u
ZO = GCE*, (14)

where u, is the friction velocity, and assuming that a, = 0.018 remains constant. The
kinematic boundary condition reads

n + U(ZO)’ZX = Wa(ZO)- (15)
Our steady air flow U(z) is set as the logarithmic wind profile

u
U(Z) = U1 In(z/ZO)s U1 = 7*! K~ 041: (16)

where « is the Von Karman constant. Such a profile is a common ground to describe
wind phenomena close to the marine boundary layer (Garratt et al., 1996). Hence, we
can reduce Eq. (15) to

N = Wa(Zo). (17)
Then, using Egs. (8)—(10) and (13) we obtain

w, = W,e'’, (18)

u, = %Wa,zeie, (19)
(o]

P, =ikp,e' / [U(Z') - c] W,(2')dZ'. (20)

z
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The Rayleigh equation (Rayleigh, 1880) is then found by eliminating £, from Egs. (9)—
(10), and is valid as long as z > z,

(U - o)WY - kK*W,) -U"W, = 0. (21)

This equations contains a singularity at a so-called critical height z,, where U(z;) = c.
All turbulence phenomena being disregarded, any possible eddies are assumed to be
set below z,, and their influence is not taken into account. We note that W,(z) and ¢
are unknown in Egs. (18)—(21). So, we have to evaluate P,(n) to get c. We have then

PAn) = Py — pa g + iKpoe'® / [U(2) - c]W,(2)dz, (22)

20

where z = z, replaces z = n as the lower integral bound, since we are studying the
linear problem. Finally, eliminating the term ikpae’g using Eq. (17), we derive

sk? sk?
g(1-s)+ CWO/1 -c? {WO/2 + kcoth(kh)} =0, (23)

where s = p,/p,, and /, = /ZUWa dz, I, = [‘Z’O"Wa dz. As the ratio density s is of order
of magnitude 10‘3, we can develop the wave speed in Eq. (23) as ¢ = ¢cg+ 5Cq + o(sz).

Next, we find ¢4 as a function of W,, which is obtained by solving Eq. (21) with ¢ ~ ¢,,.
3 The ym and y, wind inputs

3.1 ym wind input

The imaginary part of ¢ gives directly the growth rate of n(x, )

Ym = kS(c), (24)
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0

All the physical quantities derived from the growth rate y,, can be expressed with three
parameters: &, 8, and 64 (Young, 1997a,b)

gh 1J§
6= 04=—1\/2,

1

614 = Ogytanh'/2 <i> : (25)
02
dw

The dimensionless parameter 61/2, for constant h, measures the relative value of the
shallow water speed with respect to U,. The parameter 6, equivalent of the wave
age in deep water, measures the phase speed relatively to the characteristic wind
parameter U, in deep water, and & (a finite depth wave age) measures the influence
of the finite depth on 8.

In experiments, wether in wave tank or in field, the parameter Cp is used. Cp is the
observed phase speed at the peak frequency €. In this paper we used in Eq. (25) the
phase velocity ¢ = @/k of one mode instead of C, or Q,. Next we choose dimension-
less variables (topped by hats)

c=U,¢, t=-1. (26)

Using Egs. (25) and (26) in Eq. (23) and discarding terms of order two in s we obtain
c,

8(6,00u) = OguT /2 (1= 2) + 2 {TT: — 04T/}, (27)
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where T = tanh 9%. With e"’, we obtain the dimensionless growth rate Yu = %yM as

dw

o s {r%uo _ T3/2%</2)}

= 2
6 dw edw

=3 (28)

We have the following transformation rule between 8 and the dimensionless ¥,, (Mon-
talvo et al., 2013)

2w
s

— 3 T1/2
B=—=63T"2 (29)

The dimensional mean energy growth rate,

1 /OE
gl 0

can then be written as a function of 8

pE 1/2
My = sBU? <5> coth'/?(kh). (31)
3.2 y, wind input

Jeffreys (1926) established that the pressure component acting on a surface wave can
be written as

Pa,Jeffreys =g = S:Oa(Uw - C)ZIZX’ (32)

where 1 is the free surface elevation, S is the sheltering coefficient, always lower than
unity and U, is the 10 m wind velocity. This is only valid when the wave slope is larger
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than a certain critical value. Such a pressure gradient can also be obtained when the
boundary layer thickness varies from one side of the wave crest to another, thickening
on the leeward slope and resulting in a non-separated sheltering (Belcher and Hunt,
1993). We do not consider variations of the boundary layer here. Then Jeffreys as-
sumed that the rate of work transfer from the wind to the wave is (average with respect
to time)

(%)= (o ()

Our study being perturbative, we do not have any information on the possible value of
n whatsoever. We assume a sinusoidal wave of the form n = nycosk(x — ct), n, being
2

the wave amplitude. With this, and recalling that the mean wave energy is (E) = pwg%,
we can deduce the energy growth rate expression

k2
M= ?csS(U10 -c)?. (34)

Now, in order to transform U, in Uy, the relevant wind scale, we use the wind-stress
coefficient Cy, as defined Wu (1982) and the Charnock relation (Charnock, 1955)

2

u
C1o = (0.8+0.065U;0) x 10° = ——, (35)
10
U

Wu (1982) showed that the empirical Eqgs. (35) and (36) proposed for light winds are

even applicable in hurricane conditions. However, above a 30ms™" limit, the drag co-

efficient drops off the U, linear progression in Eq. (35), as we can see in Fig. 1. This

phenomenon reported in Powell et al. (2003) is due to the droplet saturation in a sus-

pension layer above the sea surface. Even though it is possible to use the model de-

veloped in Makin (2004) to calculate the correct drag coefficient and friction velocity,
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flow separation is likely to occur at wind speeds that high, preventing Miles’ mechanism
from acting. Hence, we keep the range of wind speeds below this limit for computation
and we can use the Egs. (35) and (36).

4 Results

In the following Sects. 4.1, 4.2, 4.3 and 5 we present: (i) the evolution of the finite
depth wind-wave input G with 8, for kh constant, (ii) its evolution, as a function of
wind velocity and wave age, with A constant, (iii) a comparison between the Miles’ and
Jeffreys’ mechanism for finite depth and a wind-forced NLS equation in finite depth.

After recalling several approximations, we are going to work with the finite depth
B-Miles wind input instead of y).

4.1 The finite depth B-Miles with constant kh

First, we plot in Fig. 2 the evolution of the growth rate with 8;y for several constant
values of the kh parameter. Neither k nor h are constants

— for large values of the theoretical wave age 64, the values of B are in the deep
water limit,

— from small to intermediate values of 8;4 the values of  are lower than in the deep
water limit and

d
94 o
dgfd

The small values of ;4 seem constrained. In fact, because all the curves are calculated
with the same parameter space h € [0.1m, 18 m], different bounds on kh gives different
bounds on k, and subsequently on 8. For the deep water limit kh ~ m we rediscover
Miles’ result, and below the shallow water limit kh ~ /4 we are beyond the validity of
the model.
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4.2 The finite depth B-Miles from weak to moderate winds with h constant

In deep water, we have the classical Miles’ curve 3(8,,). Herein, the introduction of
the parameter 6 transforms the unique curve of wave growth rate in families of curves
B(6:4) indexed by 6 = gh/U12, i.e. a curve for each value of §. Two types of families are
possible:

— a family of 8 curves against 6;4 indexed by h with U, constant,
— a family of B curves against 6;4 indexed by U, with h constant.

The first one was studied in Montalvo et al. (2013). In this work, and for the first time,
we presented curves of wave growth evolution as a function of U; with constant depth
h. Figures 3, 4 and 5 show g curves for constant A as a function of 84, for friction
velocities U, from 0.5 to 2.5ms™'. More specifically, this denomination refers toa 10 m
wind velocity, namely U, such that

5<Ujg<22ms™,
One can switch from U, to U, using simply Eq. (36). From now on, we will refer to U,
only. The curves show that

— no matter what the values of wind velocities are, at small enough wave age ;4
the growth rate B satisfies the known deep water limit

— the consequences of finite h are visible as 6;y augments. The coefficient G is
lesser than in the deep water limit. Furthermore, if the finite depth wave age 64 is
kept constant, the growth rate G decreases as the wind speed U, augments.

Each U,,-curve approaches its own theoretical 6;4-limited growth as (3 goes to zero (no

energy transfer). Then, the wave propagates steadily without changing its amplitude.

The 6;4 at which this happens is lower as the wind speed augments. Consequently,

developed seas are reached faster under moderate winds than under weak winds. The
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evolution of B under wind intensity and wave age shown in Figs. 3, 4, and 5 is not
a dynamical one, but rather a collection of wave snapshots taken at every step of the
growth in height and age.

4.3 Comparison yy versus y,

Very recently, Tian and Choi (2013) investigated experimentally and numerically the
evolution of deep-water waves interacting with wind, with breaking effects. They dis-
cussed the relative importance of Miles’ and Jeffreys’ models and showed that Miles’
model may be used for waves of moderate wave steepness under weak to moderate
wind forcing whereas for steep waves under strong wind forcing both mechanisms may
have to be considered. In this section we desire to measure the relative importance
of Miles’ mechanism versus Jeffreys’ mechanism in finite depth. To do that, we follow
the idea in Touboul and Kharif (2006). Taking the derived growth rates from Sects. 3.1
and 3.2, one can establish the ratio between them. It reads, with only non-dimensional
parameters,

r t ST K
R:r—Jzt—MZ— —Qfd , (37)
m Lo B\ \/Cp

where ty, = F,\‘,‘1 and t; = FJ'1 are the characteristic time scales of growth for the Miles
and Jeffreys mechanism. Hence, we can calculate R(U,q, 64) to study the evolution of
this ratio with the theoretical wave age, for different values of the wind speed. Each
point in the (6;4,U;o)-plane corresponds to a water depth h between 3m and 18 m and
a dispersive parameter kh € [%;7{] . These boundaries on kh correspond to the shallow
water and deep water limits, as discussed previously. The results are shown in Fig. 6.
When this ratio is significantly greater than unity, it means that the Jeffreys mechanism
acts faster, and dominates. On the contrary, Miles’ mechanism is dominant for values
lower than unity. One can observe in finite depth that the Miles mechanism is dominant
for mature waves whereas the Jeffreys mechanism is dominant for younger waves.
3112
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This comparison stands as long as the wave is steep enough to induce a sheltering,
as discussed before.

5 Wind-forced nonlinear Schrédinger equation in finite depth

Let us consider the air/water system from a quasi-linear point of view, i.e. the water
dynamics is considered nonlinear and irrotational and, as in Miles’ theory, the air flow
is kept linear. So with this assumption the complete irrotational Euler equations and
boundary conditions in terms of the velocity potential ¢(x, z,t) are

¢xx+¢zz=0 for —hSZSIZ(X,f), (38)
¢,=0 for z=-h, (39)
,Zt+¢x,2x_¢z =0 for z= Q(X,t)’ (40)
1 1 1
Gp+ 5@y + 5Pz +gn=—-——F, for z=nlx1). (41)
Pw

In Miles’s theory of wave generation (Miles, 1957, 1997), the complex air pressure P,
can be separated into two components, one in phase and one in quadrature with the
free surface n. A phase shift between those two quantities is necessary to transfer
energy from the air flow to the wave field. The transfer is only due to the part of £, in
quadrature with n. Hence, we will deal only with the acting pressure component, that is

Pa(X,t)=paﬁU12IZX(X,t), (42)
so that the modified Bernoulli equation reads

T2, 1.2 — _sBU2n. f = nix.t 43
¢f+§¢x+§¢z+gn——sﬂ i, for z=n(xt). (43)

From Egs. (38), (39), (40), and (43) we find a wind-forced finite depth NLS equation
for n as a function of the standard slow space and time variables ¢ = g(x — ¢4t) and
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15

v = €2, with ¢ < 1 and ¢4 the group velocity. The perturbed NLS equation reads

in, +ang +bjnf’n =idn (44)
with ¢4, a, b and d given by Egs. (45),(46),(47), and (48)

cq = %[1 + 2kh/sinh(2kh)], (45)

c5 - ghl1 - khT(1-T?)]

- 46
a o : (46)
kK2 [o 2[2¢ +cy(1 -T2
= > —2—12+13T2—2T4— > : (47)
472 | T gh- Cq
2
_ B,
d= SEET@' (48)

For more information about the derivation of the coefficients a and b see Thomas et
al. (2012). To derive a dimensionless wind-forced NLS equation we use Eq. (26) and
we obtain in the original laboratory variables x and t (after a Galilean transformation in
order to eliminate the linear term ¢y, and dropping the hats)

in; + Ane + Blnf*n = iDn (49)
with ¢4, A, B, and D now given by Egs. (50), (51), (52) and (53)

1 5 1—T2]
c 1 ,

= — + —
g 29fd egw T
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c2-5 [1 ~66;2(1 - T2)]
A=—

, (51)

26,465,
1 2,12
1 9 2[267 + cg(1-T7)]
= ?E-—12-+13T2——2T4— 5 , (52)
47262 64 6-c5

71 /2

p=sPT " (53)
2 g3
dw

Equation (49) is a wind-forced finite depth NLS equation in dimensionless variables.

5.1 The Akhmediev, Peregrine and Ma solutions for weak wind inputs in finite
depth

The classical nonlinear Schrédinger equation provides a model for freak waves, see
for example Touboul and Kharif (2006); Touboul et al. (2008); Kharif et al. (2008) and
references therein. The wind-forced nonlinear Schrédinger equation allows the study
of the wind influence on the freak waves dynamics (Touboul and Kharif, 2006; Touboul
et al., 2008; Kharif et al., 2008; Onorato and Proment, 2012). Previous authors have
carried out such studies in deep water. The present work allows, for the first time,
similar studies in finite depth with the right Miles’ growth rates.

In the following we are going only to consider the so called focusing NLS equation,
i.e. positives A and B. Introducing ' and x’ as

/ X
[l' = Bfl, X’ = —,
VA
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Equation (49) transforms, dropping the primes, into
ing + Ny + 0?1 = iD1.

Introducing a function M(x,t) as

M(x,t) = n(x,t)exp(-Dt),

we obtain from Eq. (54)

iM; + M, + exp(2Dt)|M|?M = 0.

(54)

(55)

(56)

In order to reduce Eq. (54) into the standard form of the NLS with constant coefficients
we proceed in the following way. First of all we consider the wind forcing 2Dt to be
weak, such that the exponential can be approximated by exp(-2Dt) ~ 1 — 2Dt so we

have

iM; + M + n|MPM =0, n=n(t)=1-2Dt.

Now with a change of coordinates from (x, ) to (z, 7) defined by
z(x,t) = xn(t), T(x,t)=xn(t),

and scaling the wave envelope as (Onorato and Proment, 2012)

. 2
M(z,7) = W(z,7)\/n(T)exp <‘,’7Z§ > ,

we reduce Eq. (57) to the standard focusing equation for W (z, 1)

W, + W +|WPY = 0.
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Equation (60) admits well known breather solutions that are simple analytical proto-
types for rogue wave events. They are the Akhmediev (V) (Akhmediev et al., 1987),
the Peregrine (Wp) (Peregrine, 1983) and the Kuznetsov-Ma (V) (Ma, 1979) breather
solutions.

Dysthe and Trulsen (1999) investigated whether freak waves in deep water could be
modeled by ¥, Wp or by ¥),. Onorato and Proment (2012) considered the influence
of weak wind forcing and dissipation on these ¥, Wp or ¥, solutions in deep water.

The present work allows us to go ahead and to exhibit expressions for ¥,, ¥p and
WY under the influence of weak wind forcing in finite depth h given by the extended
Miles mechanism. These solutions read (Dysthe and Trulsen, 1999):

(61)

_p cosh(Q7 - 2/®) — cos(@) cos(pz)
Ma = P ){ cosh(QT) — cos(®)cos(pz) }

with p = 2sin(@), Q = 2sin(2w) @ real and p related to the spatial period 27 /p

o =P{1- 62

e { S o0,

with p = 2sinh(®@), Q = 2sinh(2w) and Q real and related to the time period 27 /Q and
-iDZ*

P(7) = n(T)exp [ pres ] exp[2/1].

A more detailed analytical and numerical analysis in terms of x and ¢ of Eq. (49) will
be developed in a future work.
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6 Conclusions

We have extended the well known Miles’ theory to the finite depth case under breeze to
moderate wind conditions. We have linearized the equations of motion governing the
dynamics of the air/water interface problem in finite depth and we have investigated
the linear instability in time of a normal Fourier mode of wave-number k in Miles’ and
Jeffreys mechanisms in finite depth. For the Miles’ mechanism we have shown that
normal modes are unstable and grow exponentially in time as

exp i t
20°T1/2

with G the finite depth Miles’ coefficient. The curves of B against 8;4 with kh constant
showed essentially that the values of 8 remain smaller than those corresponding to the
deep water limit V8;4. Wind effects on the temporal growth have been discussed. From
a comparison between the growth rates y), and y, a diagram in the (6:4,Uo) plane
displays the domains where the Miles’ mechanism (R < 1) or the Jeffreys’ mechanism
(R > 1) is dominant.

We have derived for the first time a wind-forced finite depth nonlinear Schrédinger
equation. The wind forcing is based on the Miles’ theory extended to finite depth. This
equation admits the Akhmediev, Peregrine and Kuznetsov—Ma breather solutions for
weak wind input in finite depth.

Many parameters influence the mechanisms of wave growth under wind action,
in finite depth. For instance time variations of wind speed and wind direction, the
bathymetry effects in the field, loss of energy by bottom friction, air flow-induced sur-
face drifts, turbulence, nonlinear interactions between waves, flow separation, dissipa-
tion due to white capping and so on. The scope of this paper is not to address all of
these phenomena.
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Nevertheless, we believe that this work could be useful for the understanding of wave
generation in finite-depth situations, namely in the coastal zone. The present theory is
the first step towards more accurate freak waves models in finite depth.

Acknowledgements. P. M. thanks Labex NUMEYV (Digital and Hardware Solutions, Modeling for
the Environment and Life Sciences) for partial financial support.
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Fig. 2. Miles’8 vs 0;4. For the deep water limit kh ~ 7 our results fit the Miles’ curve. kh < /4
corresponds to shallow water that is beyond the range of validity of our model. An intermediate
value of kh is included, and we see that G is less than in the deep water limit.
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Fig. 3. B vs. 8,4, the wage-age like parameter. The water depth is # = 3m for all curves above.
For this depth, all 10 m wind speeds account for early drops in the growth rate. The deep
water limit kh — oo, originally computed by Miles, is plotted for comparison. For the lower wind
speed, the growth drop occurs closer to deep water. Although U, = 6ms™" gives a deep water-
like behaviour, we see that stronger winds implies early (wavelength-wise) drops in the growth

rate.
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